Quasiclassical trajectory calculations of hydrogen absorption in the (NaAlH4)2Ti system on a model analytical potential energy surface.
نویسندگان
چکیده
We performed a quasiclassical trajectory dynamics study on a model analytical 21-dimensional (7 active atoms) potential energy surface (PES) to examine in detail the mechanism of the hydrogen absorption in a simple (NaAlH(4))(2)Ti model system. The reaction involves a capture of H(2) by the Ti centre and formation of the (η(2)-H(2))Ti(NaAlH(3))(2) coordination complex containing the side-on bonded dihydrogen ligand. The calculated rate constant corresponds to a very fast capture of H(2) by the Ti coordination sphere without a demonstrable barrier. This implies that this step is not the rate-determining step in the complex multi-step process of the NaAlH(4) recovery. The model analytical PES captures the essence of this reaction well and the corresponding energy contours compare favourably to those based on the all-atom hybrid density functional theory calculations.
منابع مشابه
Enhanced hydrogen storage properties of NaAlH4 co-catalysed with niobium fluoride and single-walled carbon nanotubes
The effects of single-walled carbon nanotubes (SWCNTs) as a co-catalyst with NbF5 on the dehydrogenation and hydrogenation kinetics of NaAlH4 were investigated by X-ray diffraction, Fourier transform infrared spectroscopy, differential thermal analysis, temperature-programmed desorption, and isothermal hydrogen ab/desorption techniques. It has been revealed that there is a synergistic effect of...
متن کاملPotential energy surface and reactive collisions for the Au+H(2) system.
A global potential energy surface is obtained for the ground state of the endoergic Au((2)S)+H(2)(X (1)Sigma(g) (+))-->AuH((1)Sigma(+))+H((2)S) reaction. The global potential is obtained by fitting highly correlated ab initio calculations on the system, using relativistic pseudopotential for the gold atom. Several electronic states are calculated correlating with Au((2)S)+H(2), Au((2)D)+H(2), a...
متن کاملInfluence of rotation and isotope effects on the dynamics of the N((2)D)+H(2) reactive system and of its deuterated variants.
Integral cross sections and thermal rate constants have been calculated for the N((2)D)+H(2) reaction and its isotopic variants N((2)D)+D(2) and the two-channel N((2)D)+HD by means of quasiclassical trajectory and statistical quantum-mechanical model methods on the latest ab initio potential-energy surface [T.-S. Ho et al., J. Chem. Phys. 119, 3063 (2003)]. The effect of rotational excitation o...
متن کاملDynamics of the O(3P) + H2 reaction at low temperatures: comparison of quasiclassical trajectory with quantum scattering calculations.
Quasiclassical trajectory and quantum-mechanical scattering calculations are reported for the O((3)P) + H(2)(X (1)Sigma(g) (+);upsilon = 1-3,j = 0)-->OH(X (2)Pi) + H((2)S) reaction at energies close to the reaction threshold. The dynamics of the reaction have been investigated for zero total angular momentum using the lowest (3)A" potential-energy surface developed by Rogers et al. [J. Phys. Ch...
متن کاملPotential energy surfaces and quasiclassical trajectory study of the O + H2(+)→ OH(+) + H, OH + H(+) proton and hydrogen atom transfer reactions and isotopic variants (D2(+), HD(+)).
The rate constants (k; T: 200-900 K) and cross-sections (σ; Ecol: 0.010-0.50 eV) of the O + H2(+)→ OH(+) + H (1), OH + H(+) (2) reactions, which occur on the ground (1(2)A'') and first excited (1(2)A') potential energy surfaces (PESs), respectively, were investigated for the first time, considering also the rate constants for D2(+) and HD(+). Ab initio multireference configuration interaction c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 14 11 شماره
صفحات -
تاریخ انتشار 2012